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We examine the time-dependent defect fluctuations and lifetimes for a bidisperse disordered assembly of
Yukawa particles. At high temperatures, the noise spectrum of fluctuations is white and the coordination
number lifetimes have a stretched exponential distribution. At lower temperatures, the system dynamically
freezes, the defect fluctuations exhibit a 1 / f spectrum, and there is a power law distribution of the coordination
number lifetimes. Our results indicate that topological defect fluctuations may be a useful way to characterize
disordered systems.
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I. INTRODUCTION

In two-dimensional systems of interacting repulsive par-
ticles such as dusty plasmas �1–3� and colloidal assemblies
�4–7�, heterogeneous particle motions have been observed in
the dense liquid phase. The heterogeneity appears close to
the disordering transition where the system changes from
having predominantly hexagonal ordering to being heavily
defected. Recently, it was demonstrated that in the disordered
regime where dynamical heterogeneities are present, the
time-dependent density fluctuations of the topological de-
fects exhibit a 1 / f power spectrum �7�. The heterogeneous
motion disappears at higher temperatures, and simulta-
neously the noise spectrum changes to a white form and the
noise power is strongly reduced, indicating a lack of corre-
lations in the fluctuations. It was argued that motion in the
regime with dynamical heterogeneities occurs in a correlated
manner and is spatially concentrated in areas containing a
higher density of topological defects. As a result, the creation
and annihilation of topological defects is strongly correlated,
leading to the 1/ f noise signature. Recent experiments on
two-dimensional colloidal systems exhibiting heterogeneous
motion have confirmed that the colloids with more rapidly
changing coordination number are correlated with the re-
gions of motion �5�.

In the systems mentioned so far, the ground state at low
temperatures is an ordered hexagonal lattice; however, it is
known that intrinsically disordered or glassy systems also
exhibit dynamical heterogeneities �8,9�. A natural question to
ask is how topological defect fluctuations behave in systems
that are inherently disordered and that have no transition to
an ordered state as the temperature is lowered. Although
there is no ordering transition in an intrinsically disordered
system, there can be a temperature at which a dynamical
slowing down occurs, giving rise to glassy-type behaviors. It
would be interesting to study how or if the defect fluctua-
tions change as dynamical freezing is approached. In the
disordered system, the length scale of the dynamical hetero-
geneities increases as the temperature is lowered �8,9�. If the
moving regions are associated with more highly defected
regions, this may also be reflected in the defect fluctuations.

In this work we examine a two-dimensional system of a
bidisperse mixture of Yukawa particles. Previously, this sys-
tem has been shown to form a disordered state at all tem-

peratures �10�. We analyze the time-dependent defect fluc-
tuations, noise spectra, noise power, and the coordination
number lifetimes for varied temperatures. At high tempera-
tures where there is no heterogeneous motion, the defect
fluctuations have a white power spectrum, the coordination
number lifetimes are very short, and there is an exponential
decay in the distribution of lifetimes. As the temperature is
lowered, the defect fluctuations show a 1/ f power spectrum
with increased noise power. We also find a peak in the noise
power at a finite temperature we label Tn. Near this tempera-
ture, the motion is highly heterogeneous and the coordination
lifetimes are power law distributed. For temperatures below
Tn, the noise power is reduced and the coordination number
lifetimes become extremely long. We also probe the system
by examining the motion of a single particle driven by an
external force. At T=0 there is a well-defined threshold force
for motion �10�. At finite temperatures, creep occurs; how-
ever, there is a well-defined kink in the velocity force curves
at a threshold force which vanishes at Tn. These results sug-
gest that measuring topological defect fluctuations may be a
useful probe for understanding glassy and jamming behav-
iors in disordered systems.

II. SIMULATION

We consider a two-dimensional system with sides of
length L and with periodic boundary conditions in the x and
y directions. The system contains N particles interacting via a
Yukawa or screened Coulomb potential. For any two par-
ticles i and j of charge qi and qj located at positions ri and r j,
the pair interaction potential is V�rij�=qiqj exp�−�rij� /rij.
Here rij = �ri−r j� and 1/� is the screening length which is set
equal to 2.0. We consider a 50:50 mixture of particles with
charges q1 and q2 where q1 /q2=1/2. We have previously
shown that this system forms a disordered assembly at all
temperatures �10�. The particles obey overdamped dynamics
and the time-dependent particle positions and velocities are
obtained by integrating the overdamped Brownian dynamics
�11� equations of motion, which for a single particle i is

�
dri

dt
= Fi + FT + Fd. �1�

Here � is the damping coefficient and Fi=−� j�i
N �iV�rij�. The

particle-particle interactions are cut off at lengths larger than
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2/� and are calculated using a neighbor index method for
computational efficiency. Further cutoff lengths have negli-
gible effects. The thermal force is modeled as random
Langevin kicks with �Fi

T�=0 and �FT�t�FT�t���=2�kBT��t
− t��. The initial conditions are obtained by simulated anneal-
ing. For our parameters, if all the charges are set equal to the
larger charge q2, melting as defined by the onset of defects
occurs at a temperature of T=4.0. The driving force Fd is
applied to a single particle only, such that Fd= fdx̂ for the
driven particle and Fd=0 for all other particles. For most of
this work, we set fd=0. We anneal from a temperature of T
=8.0 down to a final temperature in steps of �T=0.25 and
stay at each increment temperature for over 106 Brownian
dynamics �BD� time steps. After annealing, we analyze the
topological defect density and particle motions at a fixed
temperature. Unless otherwise noted, we consider systems of
size L=32 containing N=830 particles.

In Fig. 1�a� we show the topological defects as obtained
from a Voronoi construction for a system at T=1.5. The
Voronoi construction forms a polygon around each particle
and is used to define the coordination number Cn of the par-
ticle. Particles with five, six, and seven neighbors corre-
sponding to Cn=5, 6, and 7 are marked black, white, and
gray, respectively. The system is also highly defected at other
temperatures and there is little change in the average defect
density with temperature; however, the time dependent fluc-
tuation rate of the defects changes significantly with tem-
perature as we show later. In Fig. 1�b� we illustrate the par-
ticle trajectories during 105 BD time steps at T=1.5. The
motion is highly heterogeneous, and certain regions show
motion during this time interval while other regions do not.
At higher temperatures the motion becomes more homoge-
neous throughout the sample.

III. DEFECT FLUCTUATIONS AND POWER SPECTRA

In order to characterize the defect fluctuations, we per-
form a series of simulations at different T and examine the
time dependent density of sixfold-coordinated particles,
P6�t�, defined as P6�t�=N−1�i=1

N ��Cn
i �t�−6�, where Cn

i is the

coordination number of particle i. The power spectrum of the
resulting time series is defined as

S��,T� = 	
 P6�t�e−2�i�tdt	2

. �2�

The noise power S0 is defined as the average value of the
noise spectrum at a particular value of the frequency �. After
annealing we wait 104 time steps before acquiring the time
series P6�t� to avoid any transient behaviors. In Fig. 2�a� we
show the power spectra of P6�t� for T=1.5 and 4.5. At T
=1.5 the power spectrum has a 1/ f� form with ��0.98, as
indicated by the upper solid line. For T=4.5 the noise spec-
trum is approximately white and ��0.1. We plot the evolu-
tion of � with T in the inset of Fig. 2�a�. For T�2.0, we find
1/ f noise with ��1, while at high T, the noise spectrum
becomes white with ��0. The particle trajectories also in-
dicate that the motion is no longer heterogeneous for T
	2.0. In monodisperse systems near the disorder transition,
a similar 1 / f noise signal was observed when the particle
motions were highly heterogeneous �7�. We note that for T

1.5 there is very little particle motion and the defect fluc-
tuations are strongly suppressed. This can be more clearly
seen by examining the noise power S0 at fixed �=5 as shown
in Fig. 2�b�. At high temperatures, S0 is low, but it increases
rapidly to a peak value as the temperature is reduced to T
=Tn=1.5, and then decreases quickly for T
1.5. We associ-

(a) (b)

FIG. 1. �a� Voronoi construction for a snapshot of a bidisperse
particle system at T=1.5. White polygons have six neighbors, while
black and gray polygons have five and seven neighbors, respec-
tively. �b� Particle positions �black dots� and trajectories �black
lines� for the same system during 105 simulation time steps.
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FIG. 2. �a� Power spectra S�� ,T� obtained from the time series
of the topological defect density fluctuations P6�t� obtained at T
=1.5 �upper curve� with a fit �solid line� of �=0.98 and T=4.5
�lower curve� with a fit �solid line� of �=0.1. The T=4.5 curve has
been shifted down for presentation purposes. Inset: the fitted values
of � obtained from the power spectra vs T. �b� Noise power S0 vs T.
Inset: S0 for T=1.0 to T=2.5 for varied system sizes L=16
�squares�, 32 �diamonds�, 48 �triangles�, and 54 �circles�.

C. REICHHARDT AND C. J. OLSON REICHHARDT PHYSICAL REVIEW E 75, 051407 �2007�

051407-2



ate the peak in S0 at Tn with the temperature at which the
system begins to undergo a dynamical freezing.

In the inset of Fig. 2�b�, we plot the variation in S0 for
systems of different sizes ranging from L=16 to 54. As L
increases, the peak in the noise power becomes more pro-
nounced. Additionally, although the height of the peak in S0
increases with L, at higher or lower T the noise power at the
nonpeak temperatures is reduced with increasing L. For tem-
peratures away from T=1.5, the individual power spectrum
curves have a rollover to a white spectrum at the lowest
frequencies. At T=1.5, the �=1.0 behavior persists down to
the lowest frequencies, as shown in Fig. 2�a�. The suppres-
sion of the noise power away from T=1.5 in the larger sys-
tems can be understood as arising from the fact that there is
a length scale l associated with the correlated creation or
annihilation of defects. The fluctuations with the largest l
correspond to the lowest frequencies. If l is constant, then
when the system size is small or comparable to l, the fluc-
tuations will have a 1/ f character down to the lowest observ-
able frequencies and the noise power will be increased away
from the peak in S0, as seen for L=16 in the inset of Fig.
2�b�. As the system is made larger, the fluctuations begin to
average out, a low-frequency cutoff appears in the 1/ f spec-
trum, and the noise power is reduced. Near the dynamical
freezing temperature Tn, the fluctuations grow with the sys-
tem size and 1/ f noise is present for all arbitrarily large L
and low �. For T
Tn, the fluctuations are again cut off and
the noise power is reduced. We have compared our results
against simulations of collections of non-interacting par-
ticles, where the motion is homogeneous and diffusive at all
temperatures. In this case, there is no peak in S0 and the
spectra are white for all temperatures.

IV. DIFFUSION

To quantify the amount of motion present in the system as
a function of temperature, we measure the diffusion of the
particles by computing the square displacements of the par-
ticles from an initial position as a function of time,

d�t� = �
i=1

N

�r̃i�t� − r̃i�t0��2, �3�

where r̃i�t� is the position of particle i at time t with the
effect of crossing the periodic boundary conditions removed.
For particles undergoing normal diffusion, d�t�� t. In Fig.
3�a� we plot d�t� at T=3.0, 2.5, 1.5, 1.0, and 0.5 from top to
bottom. The data were taken over a period of 107 time steps
which started after the system had entered a stationary state.
In general, we find a transient time period which lasts for 103

time steps after annealing. This transient behavior was ex-
cluded from the analysis so that t0	103 time steps. For T
	1.5, the long-time behavior of the system is consistent with
normal diffusion, as indicated by the dashed line showing a
linear slope in Fig. 3�a�. For T
1.5, within our time frame
d�t� saturates to a constant value, while at T=1.5 the long
time behavior is more consistent with subdiffusion, d�t�� t�

where �
1.0. We note that this agrees with the measures of
the noise fluctuations which indicate that the 1/ f noise which

appears at T=Tn=1.5 is associated with the presence of
system-wide slow dynamics. For T
1.5 the fluctuations are
instead associated with the rattling motions of single par-
ticles rather than long time system wide motions. In Fig. 3�b�
we plot the value of d obtained at the end of 107 steps. For
T
1.5, d saturates to a constant value since within our time
frame the particles are no longer diffusing significantly,
while d increases with T for higher T.

We note that since we are restricted to performing simu-
lations over finite periods of time, we cannot be certain that
the subdiffusive motion at T=1.5 does not cross over to
regular diffusion at extremely long times. If this were the
case, the power spectrum of the corresponding very long
time series would show a low-frequency cutoff in the 1/ f
signature at the time scale where the regular diffusion begins
to dominate. What we can conclude from our data is that,
over the time regimes which we are able to access, the ap-
pearance of the 1/ f defect fluctuations is correlated with the
subdiffusive behavior.

V. DEFECT LIFETIMES

We next consider the lifetimes of the coordination num-
bers. In Fig. 4�a� we show the coordination number Cn as a
function of time for one particle in a system at T=1.5. Dur-
ing this time frame, the particle is predominantly sixfold co-
ordinated with Cn=6, while there are occasional jumps to a
configuration with Cn=5 or 7. In some cases, such as for t
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FIG. 3. �a� Measure of the particle displacements d�t� vs t for
�top curve to bottom curve� T=3, 2.5, 1.5, 1.0, and 0.5. The dashed
line is a linear fit showing the behavior expected for a system un-
dergoing normal diffusion. �b� Value of d�t� at t=107 time steps
measured for the same system as a function of T.
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	7000, the particle maintains Cn�6 for a longer period of
time. We obtain a similar plot regardless of which particle in
the system is selected. In Fig. 4�b� we plot Cn vs time for the
same particle at T=3.5, showing that the particle coordina-
tion number is changing much more rapidly. The coordina-
tion lifetimes tl are obtained by measuring the length of time
that elapses between changes in Cn for a given particle. We
histogram this quantity over all the particles, and plot the
resulting P�tl� in Fig. 4�c� for two systems at T=3.5 �lower
curve� and 1.5 �upper curve�. The straight solid line is a
power law fit to P�tl�� tl

−� with �=1.6, while the curve at
T=3.5 is fitted well to a stretched exponential. In the inset of
Fig. 4�c� we plot P�tl� for T=5.0, 3.5, 2.5, and 1.5, which
shows that for the higher temperatures the average lifetime
�tl� is shorter. For T=5.0, P�tl� can be fitted reasonably well
to an exponential distribution. For the intermediate tempera-
tures, we can fit the data with a stretched exponential form,
and at T=1.5 we obtain a power law fit. For T
1.5, the
lifetimes become extremely long and we observe a close to
bimodal distribution where there are a few particles jumping
back and forth giving rise to short values of tl, while Cn of
the other particles does not change for the duration of the
simulations over times of 2.5107 BD steps.

VI. YIELDING BEHAVIOR

The results from Figs. 2–4 suggest that near T=1.5 some
type of dynamical crossover or freezing occurs. We can also
probe the system by slowly driving a single particle through
it. If the system acts rigidly at low drives, then there is a
threshold force fc above which the driven particle moves
with respect to the background. Previous work on this sys-
tem at T=0 has characterized this threshold force �10�. Ex-
periments have also shown evidence for a threshold force to
motion for disordered colloidal systems �12�. In general, we

find that creep can occur at low but finite temperatures; how-
ever, a threshold force can still be identified by a sudden
increase or kink in the particle velocity vs applied force. In
Fig. 5 we plot the velocity Vx vs applied drive fd for a single
probe particle which has a charge q /q1=5.0 moving through
a disordered assembly of particles at temperatures ranging
from T=0 to 3.5. If the surrounding particles are absent, the
probe particle moves linearly with V�Fd. The velocity-force
curves are obtained by slowly increasing the applied drive fd.
For T
1.5, Vx shows a sharp downward concavity at finite
fd. We define the threshold force fc as the value at which
Vx=510−5. For T	1.5, the curves show a slight positive
concavity and if we linearly extrapolate the curves to Vx=0,
the threshold force is indistinguishable from zero. In the in-
set of Fig. 5 we plot the threshold force fc extracted from the
velocity-force curves. We have considered various rates of
increasing fd and find no differences in the extracted values
of fc. The threshold decreases with increasing temperature up
to T=1.5, and above this temperature there is no threshold
for motion. These results add further evidence that there is a
dynamical freezing or jamming that occurs near T=1.5, as
also reflected in the defect fluctuations. We note that it is
beyond the scope of this paper to determine the true nature of
the finite-temperature dynamical freezing, such as whether it
resembles a glass transition.

VII. DISCUSSION

The main goal of this paper is to introduce a different
measure, the fluctuations in the defect density, for character-
izing disordered systems near freezing. The question of
whether there is really a finite-temperature freezing transition
in the equilibrium system near T=1.5 is beyond the scope of
our paper. Although we have found several signatures for
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FIG. 4. �a� Coordination number Cn vs time for a single particle
at T=1.5 showing occasional changes. �b� Cn vs time for a single
particle at T=3.5 showing much more rapid changes. �c� Histogram
of the coordination number lifetimes P�tl� for T=3.5 �lower curve�
and 1.5 �upper curve�. The solid line is a power law fit with �
=1.6. Inset: P�tl� at T=5.0, 3.5, 2.5, and 1.5, from left to right.
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some form of dynamical slowing down at T=1.5, it is pos-
sible that for very long times beyond our simulation time
scales, the system would show linear diffusion and the fluc-
tuations would lose the 1/ f characteristic at very low fre-
quencies. We note that there is other evidence that topologi-
cal fluctuations and defects appear to be correlated with
jamming. Recently, the shape features of topological defects
have been utilized to study the jamming transition in two-
dimensional granular materials �13�. In this case the fluctua-
tions are nonthermal; however, a jamming transition can still
occur. Measurements of fluctuations of P6�t� for the granular
system, in the manner we suggest in the present work, reveal
the same trends that we have found here. The defect fluctua-
tions have a white noise characteristic away from the jam-
ming transition which crosses over to a 1/ f signature near
jamming with a peak in the finite-frequency noise power
�14�. This indicates that the topological fluctuations near
jamming or freezing may universally exhibit 1 / f noise fea-
tures.

There has also been recent work on two-dimensional bi-
nary glass-forming systems showing correlations between
the onset of glassy properties and the disappearance of cer-
tain types of topological defects at finite temperature. This
adds further evidence that there may indeed be a finite-
temperature freezing or jamming transition in two-
dimensional disordered systems that is connected with the
motion of defects �15�.

VIII. SUMMARY

To summarize, we have shown that the topological defect
fluctuations is a useful quantity that can be employed to un-

derstand dynamical freezing and heterogeneities in disor-
dered systems. We specifically find that in regimes where
there are dynamical heterogeneities, the time-dependent de-
fect density fluctuations show a 1/ f characteristic noise spec-
trum, and that at higher temperatures where the motion is
uniform, a white noise spectrum appears. The defect noise
power also shows a peak just before the dynamics of the
system freezes, and this effect is robust for increasing system
sizes. The coordination number lifetimes show a power law
distribution in the heterogeneous regions which crosses over
to an exponential form at higher temperatures where the het-
erogeneities are lost. We correlate the peak in the noise
power with the onset of subdiffusive behavior as well as with
the temperature where a threshold force for the motion of a
driven probe particle disappears. Our results should be test-
able for disordered charge-stabilized colloidal assemblies,
dusty plasmas, and other disordered charged systems. We
note that recent experiments on granular system near jam-
ming have found the same type of behavior in the time series
analysis of the defect fluctuations as the jamming transition
is approached.
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